Advanced Retrieval-Augmented Generation system for intelligent FusionAuth documentation search and Q&A
Try searching the FusionAuth documentation with natural language queries
Results will appear here...
# Advanced RAG System Components 1. Document Processing Pipeline ├── Markdown parser for FusionAuth docs ├── Code block extraction and indexing ├── Metadata enrichment (tags, categories, versions) └── Chunking strategy (semantic boundaries) 2. Vector Database (ChromaDB) ├── 1,000+ documentation pages indexed ├── Embedding model: OpenAI text-embedding-ada-002 ├── Semantic similarity search └── Hybrid search with BM25 ranking 3. Query Processing ├── Intent classification ├── Query expansion and reformulation ├── Context window optimization └── Source attribution tracking 4. Response Generation ├── GPT-4 for answer synthesis ├── Code example generation ├── Confidence scoring └── Source citation system
from chromadb import Client from openai import OpenAI from fastapi import FastAPI, HTTPException from pydantic import BaseModel class RAGSystem: def __init__(self, config): self.vector_store = ChromaDB(config.db_path) self.llm_client = OpenAI(api_key=config.api_key) self.embedder = SentenceTransformer(config.model) async def query(self, question: str) -> RAGResponse: # 1. Generate query embedding query_embedding = self.embedder.encode(question) # 2. Semantic search in vector store results = self.vector_store.similarity_search( query_embedding, k=5, metadata_filter={"type": "documentation"} ) # 3. Build context from retrieved documents context = self.build_context(results) # 4. Generate response with GPT-4 response = await self.llm_client.chat.completions.create( model="gpt-4", messages=[ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": f"Context: {context}\n\nQuestion: {question}"} ], temperature=0.1 ) # 5. Return structured response with sources return RAGResponse( answer=response.choices[0].message.content, sources=[doc.metadata for doc in results], confidence=self.calculate_confidence(results) )
# Search endpoint POST /api/search { "query": "How to configure SAML SSO?", "filters": { "category": "authentication", "version": "latest" }, "max_results": 5 } # Response format { "answer": "To configure SAML SSO in FusionAuth...", "sources": [ { "title": "SAML v2 Configuration", "url": "/docs/v1/tech/samlv2/", "relevance": 0.95 } ], "confidence": 0.92, "response_time_ms": 1847 }