Advanced Retrieval-Augmented Generation system for intelligent FusionAuth documentation search and Q&A
Try searching the FusionAuth documentation with natural language queries
Results will appear here...
# Advanced RAG System Components 1. Document Processing Pipeline ├── Markdown parser for FusionAuth docs ├── Code block extraction and indexing ├── Metadata enrichment (tags, categories, versions) └── Chunking strategy (semantic boundaries) 2. Vector Database (ChromaDB) ├── 1,000+ documentation pages indexed ├── Embedding model: OpenAI text-embedding-ada-002 ├── Semantic similarity search └── Hybrid search with BM25 ranking 3. Query Processing ├── Intent classification ├── Query expansion and reformulation ├── Context window optimization └── Source attribution tracking 4. Response Generation ├── GPT-4 for answer synthesis ├── Code example generation ├── Confidence scoring └── Source citation system
from chromadb import Client
from openai import OpenAI
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
class RAGSystem:
def __init__(self, config):
self.vector_store = ChromaDB(config.db_path)
self.llm_client = OpenAI(api_key=config.api_key)
self.embedder = SentenceTransformer(config.model)
async def query(self, question: str) -> RAGResponse:
# 1. Generate query embedding
query_embedding = self.embedder.encode(question)
# 2. Semantic search in vector store
results = self.vector_store.similarity_search(
query_embedding,
k=5,
metadata_filter={"type": "documentation"}
)
# 3. Build context from retrieved documents
context = self.build_context(results)
# 4. Generate response with GPT-4
response = await self.llm_client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": f"Context: {context}\n\nQuestion: {question}"}
],
temperature=0.1
)
# 5. Return structured response with sources
return RAGResponse(
answer=response.choices[0].message.content,
sources=[doc.metadata for doc in results],
confidence=self.calculate_confidence(results)
)
# Search endpoint
POST /api/search
{
"query": "How to configure SAML SSO?",
"filters": {
"category": "authentication",
"version": "latest"
},
"max_results": 5
}
# Response format
{
"answer": "To configure SAML SSO in FusionAuth...",
"sources": [
{
"title": "SAML v2 Configuration",
"url": "/docs/v1/tech/samlv2/",
"relevance": 0.95
}
],
"confidence": 0.92,
"response_time_ms": 1847
}